A Z pontszám kiszámítása: 15 lépés (képekkel)

Tartalomjegyzék:

A Z pontszám kiszámítása: 15 lépés (képekkel)
A Z pontszám kiszámítása: 15 lépés (képekkel)

Videó: A Z pontszám kiszámítása: 15 lépés (képekkel)

Videó: A Z pontszám kiszámítása: 15 lépés (képekkel)
Videó: 5 MIN THIGH GAP WORKOUT *fast results* 2024, November
Anonim

A Z-pontszámot mintavételre használják egy adathalmazban, vagy annak meghatározására, hogy hány szórás van az átlag felett vagy alatt.. A minta Z-pontszámának megtalálásához először meg kell találnia annak átlagát, varianciáját és szórását. A Z-pontszám kiszámításához meg kell találni a különbséget a mintaérték és az átlagérték között, majd el kell osztani a szórással. Bár sokféleképpen lehet kiszámítani a Z-pontszámot az elejétől a végéig, ez nagyon egyszerű.

Lépés

Rész 1 /4: Az átlag kiszámítása

A Z pontszámok kiszámítása 1. lépés
A Z pontszámok kiszámítása 1. lépés

1. lépés. Figyeljen adataira

Szüksége van néhány kulcsfontosságú információra a minta átlagának vagy átlagának kiszámításához.

  • Tudja meg, mennyi van a mintájában. Vegye ezt a mintát a kókuszfákról, a mintában 5 kókuszfa található.

    Z pontszámok kiszámítása 1. lépés Bullet1
    Z pontszámok kiszámítása 1. lépés Bullet1
  • Ismerje meg a megjelenített értéket. Ebben a példában a megjelenített érték a fa magassága.

    A Z pontszámok kiszámítása 1. lépés Bullet2
    A Z pontszámok kiszámítása 1. lépés Bullet2
  • Ügyeljen az értékek változására. Nagy, vagy kis tartományban van?

    A Z pontszámok kiszámítása 1. lépés Bullet3
    A Z pontszámok kiszámítása 1. lépés Bullet3
A Z pontszámok kiszámítása 2. lépés
A Z pontszámok kiszámítása 2. lépés

2. lépés. Gyűjtse össze az összes adatát

A számítás megkezdéséhez szüksége lesz ezekre a számokra.

  • Az átlag a minta átlagos száma.
  • Kiszámításához adja össze a minta összes számát, majd ossza el a minta méretével.
  • Matematikai jelölésben n a minta mérete. A mintafa magassága esetén n = 5, mert ebben a mintában a fák száma 5.
A Z pontszámok kiszámítása 3. lépés
A Z pontszámok kiszámítása 3. lépés

3. Összeadja a minta összes számát

Ez az átlag vagy átlag kiszámításának első része.

  • Például 5 kókuszfa mintát használva a minta 7, 8, 8, 7, 5 és 9 -ből áll.
  • 7 + 8 + 8 + 7, 5 + 9 = 39, 5. Ez a mintában szereplő összes érték.
  • Ellenőrizze a válaszokat, és győződjön meg arról, hogy helyesen adta hozzá.
A Z pontszámok kiszámítása 4. lépés
A Z pontszámok kiszámítása 4. lépés

4. lépés: Ossza el az összeget a minta méretével (n)

Ez az adatok átlagát vagy átlagát adja vissza.

  • Például a mintafa magasságát használva: 7, 8, 8, 7, 5 és 9. A mintában 5 fa található, tehát n = 5.
  • A mintánkban szereplő összes fa magasság összege 39. 5. Ezután ezt a számot el kell osztani 5 -vel, hogy megkapjuk az átlagot.
  • 39, 5/5 = 7, 9.
  • A fa átlagos magassága 7,9 méter. Az átlagot általában szimbólum jelöli, tehát = 7, 9

2. rész a 4 -ből: A szórás megtalálása

A Z pontszámok kiszámítása 5. lépés
A Z pontszámok kiszámítása 5. lépés

1. lépés. Keresse meg a szórást

A szórás egy szám, amely megmutatja, hogy az adatok milyen messze terjednek az átlagtól.

  • Ez a számítás megmutatja, hogy az adatok milyen mértékben vannak elosztva.
  • Az alacsony szórású minták olyan adatokkal rendelkeznek, amelyek nagyon szorosan csoportosulnak az átlag körül.
  • Egy nagy szórású minta olyan adatokkal rendelkezik, amelyek messze vannak az átlagtól.
  • A varianciát általában két adathalmaz vagy minta közötti eloszlás összehasonlítására használják.
A Z pontszámok kiszámítása 6. lépés
A Z pontszámok kiszámítása 6. lépés

2. lépés: Vonja le az átlagot a minta minden számából

Megtudhatja, hogy a mintában szereplő egyes számok mennyiben térnek el az átlagtól.

  • A fa magasságú mintánkban (7, 8, 8, 7, 5 és 9 láb) az átlag 7,9.
  • 7-7, 9 = -0, 9, 8-7, 9 = 0, 1, 8-7, 9 = 0, 1, 7, 5-7, 9 = -0, 4 és 9-7, 9 = 1, 1.
  • Ismételje meg ezt a számítást, hogy megbizonyosodjon arról, hogy helyes. Nagyon fontos, hogy ebben a lépésben helyesen határozza meg az értékeket.
A Z pontszámok kiszámítása 7. lépés
A Z pontszámok kiszámítása 7. lépés

Lépés 3. Négyzetezze ki az összes számot a kivonás eredményéből

Mindegyik számra szüksége lesz a minta varianciájának kiszámításához.

  • Ne feledje, hogy mintánkban minden adatértékünkkel kivonjuk a 7,9 átlagot. (7, 8, 8, 7, 5 és 9) és az eredmények: -0, 9, 0, 1, 0, 1, -0, 4 és 1, 1.
  • Négyzetezze be ezeket a számokat: (-0, 9)^2 = 0, 81, (0, 1)^2 = 0, 01, (0, 1)^2 = 0, 01, (-0, 4)^2 = 0, 16 és (1, 1)^2 = 1, 21.
  • Ennek a számításnak a négyzetes eredményei: 0, 81, 0, 01, 0, 01, 0, 16 és 1, 21.
  • Mielőtt továbblépne a következő lépéshez, ellenőrizze a válaszokat.
A Z pontszámok kiszámítása 8. lépés
A Z pontszámok kiszámítása 8. lépés

4. lépés. Összeadja az összes négyzetet

Ezt a számítást négyzetösszegnek nevezzük.

  • A mintafa magasságában a négyzetes eredmények: 0, 81, 0, 01, 0, 01, 0, 16 és 1, 21.
  • 0, 81 + 0, 01 + 0, 01 + 0, 16 + 1, 21 = 2, 2
  • Fa magasságú példánkban a négyzetek összege 2, 2.
  • Mielőtt továbblépne a következő lépéshez, ellenőrizze az összegét, és győződjön meg arról, hogy a válasz helyes.
A Z pontszámok kiszámítása 9. lépés
A Z pontszámok kiszámítása 9. lépés

5. lépés. Oszd meg a négyzetek összegét (n-1) -el

Ne feledje, hogy n a minta mérete (hány darab van a mintában). Ez a lépés generálja a szórást.

  • A fa magasságú mintánkban (7, 8, 8, 7, 5 és 9 láb) a négyzetek összege 2, 2.
  • Ebben a mintában 5 fa található. Ekkor n = 5.
  • n - 1 = 4
  • Ne feledje, hogy a négyzetek összege 2, 2. A szórás kiszámításához számítsa ki: 2, 2 /4.
  • 2, 2 / 4 = 0, 55
  • Így ennek a mintafa magasságnak a szórása 0,55.

3. rész a 4 -ből: A szórás kiszámítása

A Z pontszámok kiszámítása 10. lépés
A Z pontszámok kiszámítása 10. lépés

1. lépés. Keresse meg a varianciaértéket

Szüksége van rá, hogy megtalálja a minta szórását.

  • A szórás azt jelenti, hogy az adatok mennyire terjednek el az átlagtól vagy az átlagtól.
  • A szórás egy szám, amely azt jelzi, hogy a mintában szereplő adatok mennyire vannak elosztva.
  • A mintafa magasságunkban a szórás 0,55.
A Z pontszámok kiszámítása 11. lépés
A Z pontszámok kiszámítása 11. lépés

2. lépés. Számítsa ki a variancia négyzetgyökét

Ez az érték a szórás.

  • A mintafa magasságában a szórás 0,55.
  • 0, 55 = 0, 741619848709566. Ebben a számításban általában nagy tizedes számot kapunk. A vessző után legfeljebb két vagy három számjegyet kerekíthet a szórás értékéhez. Ebben az esetben 0,74 -et veszünk.
  • Kerekítéssel a mintafa magasság minta szórása 0,74
A Z pontszámok kiszámítása 12. lépés
A Z pontszámok kiszámítása 12. lépés

3. lépés: Ellenőrizze újra az átlagot, a szórást és a szórást

Ez annak biztosítására szolgál, hogy a szórás helyes értékét kapja.

  • Jegyezze fel a számítás során megtett lépéseket.
  • Ez lehetővé teszi, hogy megnézze, hol hibázott, ha van ilyen.
  • Ha az átlag, a szórás és a szórás eltérő értékeit találja ellenőrzéskor, ismételje meg a számítást, és figyeljen minden folyamatra.

4. rész a 4 -ből: A Z pontszám kiszámítása

A Z pontszámok kiszámítása 13. lépés
A Z pontszámok kiszámítása 13. lépés

1. lépés: Használja ezt a formátumot a z-pontszám megkereséséhez:

z = X - /. Ez a képlet lehetővé teszi a z-pontszám kiszámítását a minta minden adatpontjára.

  • Ne feledje, hogy a z-seb mértéke annak, hogy a szórás milyen messze van az átlagtól.
  • Ebben a képletben X a tesztelni kívánt szám. Tegyük fel például, hogy szeretné megtalálni, hogy milyen messze van a szórás 7,5 az átlagtól a fa magasságú példánkban, helyettesítse az X -et 7,5 -tel
  • Miközben az átlag. A fa magasságú mintánkban az átlag 7,9.
  • És ez a szórás. A mintafa magasságunkban a szórás 0,74.
A Z pontszámok kiszámítása 14. lépés
A Z pontszámok kiszámítása 14. lépés

2. lépés: Kezdje a számítást úgy, hogy kivonja az átlagot a tesztelni kívánt adatpontokból

Ezzel megkezdődik a z-pontszámítás.

  • Például a mintafa magasságában meg akarjuk találni, hogy mi a szórás 7,5 az átlagtól 7,9.
  • Ekkor számolni kell: 7, 5 - 7, 9.
  • 7, 5 - 7, 9 = -0, 4.
  • A folytatás előtt ellenőrizze kétszer, amíg meg nem találja a helyes átlagot és kivonást.
A Z pontszámok kiszámítása 15. lépés
A Z pontszámok kiszámítása 15. lépés

3. lépés. A kivonás eredményét ossza el a szórással

Ez a számítás z-pontszámot ad vissza.

  • A mintafa magasságában a 7,5-ös adatpontok z-pontszámát szeretnénk.
  • Kivettük az átlagot a 7.5 -ből, és -0, 4 -et kaptunk.
  • Ne feledje, a mintafa magasságának szórása 0,74.
  • - 0, 4 / 0, 74 = - 0, 54
  • Tehát a z -pontszám ebben az esetben -0,54.
  • Ez a Z -pontszám azt jelenti, hogy ez a 7,5 a mintafa magasságának átlagától -0,54 szórásig terjed.
  • A Z-pontszám lehet pozitív vagy negatív szám.
  • A negatív z-pontszám azt jelzi, hogy az adatpontok kisebbek, mint az átlag, míg a pozitív z-pontszám azt jelzi, hogy az adatpontok nagyobbak, mint az átlag.

Ajánlott: